
 ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 10, December 2012

Copyright to IJARCCE www.ijarcce.com 808

Open Source Software and Reliability Metrics
Vinay Tiwari

1
, Dr. R.K. Pandey

2

University Institute of Computer Science and Applications, R.D. University, Jabalpur INDIA
1, 2

ABSTRACT: Open source software during the last decade has got phenomenal success but still people are hesitant in picking up

open source products. Various Studies shows that the adoption rate of open source software is very low especially in the countries

like India. Reliability and quality of open source software may be the main concern for the most users. Users not only want high

reliable software but often desire to check the quantitative estimation of the reliability of the open source product. Reliability

metrics are units of measure for system reliability which are used to quantify the reliability of the software product. Various

reliability metrics are exists which measures software reliability in various development phases like requirements, Design, coding

and testing phases and helps project managers to assess the ongoing project. OSS development methodology is quite distinct and

does not have formal document for Requirement, Design, Testing, and so on. Hence these metrics have to be studied on the open

source software point of view. In OSS the end-user is also a part of development community and various statistics like number of

contributors, number of commits, usage levels in terms of number of users, project behaviour in terms of faults/bugs reports and

fixing time source line of code etc. are publicly available through the repository sites. Therefore the quality and reliability of the

OSS code needs to be studied on the scale of these parameters. In this paper exploratory study is made on reliability metrics in view

of OSS software and proposes a derived metrics based on these repository metrics of OSS. Although reliability is hard to measure

but proposed simple derived user oriented matrix facilitate user for quantitative estimation and helps them to take decision on the

adoption of OSS software.

Keywords: Open Source Software, Software Metrics, Reliability, Reliability Metrics, OSS Contributors, Source Code, Commits

I. INTRODUCTION

Open source software during the last decade has got

phenomenal technological success and produces the

alternate form of software development methodology. Open

Source Project Hosting Websites like SourceForge, Google

Code, GitHub, Codeplex, Launchpad etc. not only providing

open source packages to the users but also providing

development platform to the developers and still thousands

of open source projects are in developing stages at these

sites. Although developers have produced systems with a

functionality that is competitive with similar proprietary

software developed by commercial software organizations,

people are still hesitant in picking up open source products.

Various Studies shows that the adoption rate of open source

software is very low especially in the countries like India.

Reliability and quality of open source software may be the

main concern for the most users. Users not only want high

reliable software but often desire to check the quantitative

estimation of the reliability of the open source product.

Software metrics are the quantifiable measurement of the

software attributes and development process that are used to

evaluate performance of software and reliability metrics are

units of measure for system reliability. Reliability metrics

are used to quantitatively express the reliability of the

software product. Various reliability metrics are exists for

the requirement phase design-coding phase, testing phase

which measures software reliability during the software

development and testing and helps project managers to

assess the ongoing project and take managerial decisions.

Open source software development strategies are quite

distinct from that of traditional software development

methods. Free Open Source Software Development

(FOSSD) is a way for building deploying and sustaining

large software systems on a global basis and differs in many

interesting ways from the principles and practices

traditionally advocated for software engineering [1]. For

example this does not have formal document for

Requirement, Design, Testing, and so on. Software design

before the development and software testing before the

release is hardly carried out in the OSS development.

Secondly there is no single well defined development

process for OSS and it can vary from project to project. In

an open source environment no project managers or

company exists, there are mainly poll of

developers/contributors and users. Hence these metrics have

to be studied on the open source software point of view. In

OSS the end-user is also a part of development community

and they also have an opportunity to see the source code and

various other statistics related to software like number of

contributors, number of commits, usage levels in terms of

number of users, project behaviour in terms of faults/bugs

reports and fixing time source line of code etc. which were

not possible in the case of proprietary software. These

statistical information are publicly available through the

project repository sites or code search sites like Ohloh. In a

closed source environment user is nothing to do with the

metrics since they only have the end-product in hand, but in

open source development source code is also available to

the user. There is a need that quality and reliability of the

OSS code needs to be studied on the scale of parameters

publicly available and simple reliability metrics has to be

 ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 10, December 2012

Copyright to IJARCCE www.ijarcce.com 809

established on users‟ point of view. In the subsequent

section an exploratory study is made on the reliability

metrics in view of OSS software and proposed a derived

metrics on the basis of available statistics which support

users to take decision on reliability of OSS. Although

reliability is hard to measure but this simple derived user

oriented metrics helps them to take decision on the adoption

of OSS software.

II. SOFTWARE METRIC

Since its inception the definition of software metrics has

taken various forms. According to the IEEE standard

glossary of Software Engineering terms software metrics are

quantitative measure of the degree to which a system,

component, or process possesses a given attribute [2].

Software metrics deals with the estimation, measurement

and quantify different attributes of different attributes of the

software product and the software development process. A

metric is a quantifiable measurement of software product,

process, or project that is directly observed, calculated, or

predicted [3] i.e. they are used to compare software

products, processes, or projects or to predict their outcomes.

Software metric is a simple quantitative measure derivable

from any attribute of the software life cycle [4]. Metrics are

quantitative measures that enable software people to gain

insight into the efficacy of software process and also

pinpoint problem areas [2]. It is a process of measuring the

quality of software. Metrics are usually specialized by the

subject area and are valid only within a certain domain and

cannot be directly benchmarked or interpreted outside it.

Essentially, software metrics deals with the measurement of

the software product and the process by which it is

developed. Software metrics are used to obtain objective

reproducible measurements that can be useful for quality

assurance, performance, debugging, management, and

estimating costs. The term software metrics is a collective

term used to describe the very wide range of activities that

are related to measurement in software engineering. These

activities include [5]:

• Quantitative values i.e. producing numbers that

 characterize properties of software code (these are the

 classic software „metrics‟)

• Prediction models to predict resource requirements

 and software quality

• Quantitative aspects of quality control and assurance

 (this covers activities like recording and monitoring

 defects during development and testing.

Metrics have been used more and more in making

quantitative/qualitative decisions as well as in risk

assessment and reduction. They give software professionals

the ability to evaluate software process and the importance

of software metrics has grown in the software engineering

community.

III. CLASSIFICATION OF METRICS

There is no agreement in the literature on how to classify

metric. They can be classified in variety of ways on

development, observation, measurement, significance and

Commercial Perspective under different categories.

Depending upon behaviour and characteristics same metrics

may belong to more than one category.

Broadly metrics are classified as Process Metric, Product

Metric and Project metric. Process metrics are measures of

the software development process. It is used to measure the

characteristic of the methods, techniques and tools

employed in developing, implementing and maintaining the

software system. It describes the effectiveness and quality of

a process that is used to produce software. Examples are

type of methodology used, efforts required, time needed,

defect removal average level of experience of the

programming staff etc. Product Metric describes the

characteristics of the product such as size, design features,

performance, quality, etc. It is used to measure the

characteristic of the documentation, code, the size of the

final program i.e either source or object code. These are

measures of the software product at any stage of its

development, from requirements to installed system. Project

metrics describes the characteristics of a project and also its

execution. For example number of software developers,

staffing, cost and schedule, etc.

From the measurement perspective metrics are classified as

direct measurement metrics, Indirect or derived

measurement metrics and prediction measurement metrics.

Direct measurement is assessment of something existing [3]

e.g. number of lines of code. Indirect/ derived measurement

means calculation involving other attributes or entities by

using some mathematical model. It always contains a

calculation of at least two metrics [3]. E.g. defect density =

no. of defects in a software product / total size of product.

Prediction System consists of a mathematical model

together with a set of prediction procedures for determining

unknown parameters and interpreting results [3]. E.g.

predict effort required to develop software from measure of

the functionality – function point count Software Quality.

From observation perspective, Metrics can also be

categorized as Primitive metrics and Computed metrics [6] .

Primitive metrics are based on the direct observation such as

program size i.e. Line of Code (LOC) metrics, total

development time of the project, or number of defects

observed in unit testing etc. [7]. Computed metrics as name

suggest are derived from the computation in some manner

from other metrics. Computed metrics are combinations of

other metric values and thus are often more valuable in

understanding or evaluating the software process than are

simple metrics [7]. Examples of computed metrics are those

commonly used for productivity, such as LOC produced per

person-month (LOC/person-month), or for product quality,

 ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 10, December 2012

Copyright to IJARCCE www.ijarcce.com 810

such as the number of defects per thousand lines of code

(defects/KLOC).

IV. SOFTWARE RELIABILITY AND ITS MEASURES

According to ANSI [8] software reliability is defined as “the

probability of failure free software operation for a specified

period of time in a specified environment”. Informally

reliability is defined as a measure of how closely a system

matches its stated specifications. Software reliability is

based on the concept of failures. Failure of software occurs

for variety of reasons like defects in code i.e. coding error,

faulty software design, irrelevant input data etc. Reliability

means the absence of defects which cause incorrect

operation, data loss or sudden failures. It is obvious that

software product having a large number of defects is

unreliable. It is also clear that the reliability of the system

improves if the number of defects in it is reduced. Software

reliability is comprised of three major mechanisms these are

fault prevention, fault detection and removal and

measurement to maximize reliability [9].

Reliability growth:

Software reliability is not a direct function of time and it is

fundamentally differs from hardware reliability. Software

has no aging property i.e software does not deteriorate or

physically change in any other way with time. In this sense

the factor of time is not explicitly involved. Unlike

mechanical or electronic components that are subject to

wearing out. Software reliability doesn‟t decrease with time,

because software doesn‟t wear out. Hardware failure can be

“fixed” by replacing a faulty component with an identical

one, therefore hardware reliability is stable or constant over

time there is no growth in reliability. Whereas software

problems can be “fixed” by changing the code in order to

have the failure not happen again, therefore there is always a

possibility of growth of software reliability. This

phenomenon is referred to as reliability growth.

Measuring reliability means the measuring of defects.

Identification and removing of software error contribute to

increased reliability of software. Software reliability can not

be directly measured, so other related factors are measured

to estimate software reliability and compare it among

products. Development process, faults and failures found are

all factors related to software reliability.

V. RELIABILITY METRICS

Reliability metrics are units of measure for system

reliability and are used for software reliability evaluation

and assurance. Reliability metrics assess the degree to which

a software product consistently performs its intended

function without failure i.e. it assess the probability of

software failure or the rate at which software errors will

occurs. Reliability metrics are derived from failure

occurrence expressions and data. Software Reliability

Measurement is not an exact science and measuring

software reliability remains a difficult problem since there is

no clear definition to what aspects are related to software

reliability. To estimate and predict the reliability of software

product Software reliability metrics use statistical methods

applied to information obtained during the development or

maintenance phases of software. Reliability is also

measured by counting the number of operational failures

and relating these to demands made on the system at the

time of failure. For critical systems, a long-term

measurement program is required to assess the reliability.

Reliability metrics are important for software reliability

because they provide quantitative indicator for reliability

management, evaluate and validate reliability; trade-off

among cost, schedule, and reliability, monitor testing

process and interpret reliability behaviour. The current

practices of software reliability measurement are classified

as follows:

Requirement Reliability Metrics:

Requirement specifies what features and functionality must

be included in the final software. During requirement phase

requirement of the customer is gathered and organized in to

software requirement specification. Here important point is

that the clear understanding between client and developer

must exist. For high reliability software the requirement

must be structured complete and easy to apply [9]. The

requirements should not contain inadequate information. In

order to develop reliable software from requirement phase

the requirements must be free from multiple meanings [10].

There should not be any ambiguous data in the

requirements. If there exists any ambiguous data , then it is

difficult for the developer to implement that specification.

The requirement must contain the valid structure to avoid

the loss of valuable information. Requirement Reliability

metrics evaluates the above said quality factors of the

requirement document. Some requirement phase metrics are

Requirement compliance, Number of conflicting

requirement, number of fault remaining, cause and effect

graphing, fault day numbers, fault density test, test

coverage, Defect indices, error indices.

Design and Code Reliability Metrics

Software requirement specification document gathered

during requirement phase is transform into structure during

the design phase. The quality factors that exists in design

and coding plan are complexity, size and modularity. More

complex modules are more difficult to understand and have

a higher probability of defects than less complex module

 ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 10, December 2012

Copyright to IJARCCE www.ijarcce.com 811

[11]. The complexity has a direct impact on overall quality,

so complexity of the modules should be less. Size of the

software reflects the complexity, development effort and

reliability of the software. LOC (Lines of Code), or KLOC

(Lines of Code in thousands is an intuitive initial approach

to measuring software size. LOC or KLOC is depends upon

the factors such as blank lines, comments, executable

statements etc. The reliability will decrease if modules have

a combination of high complexity and large size. High

complexity and small size will sometimes also decrease the

reliability because; the smaller size results in a short code

which is difficult to alter. For the object oriented code

additional metrics are required to evaluate the quality of the

software. Weighted method per class (WMC) is one of them

such metrics which is used to predict how much time and

effort is required to develop and maintain the class. Some

other metrics are RFC (Response for a class), CBO

(Coupling between objects), DIT (Depth in Tree), NOC

(Number of children), Cylcomatic complexity, software

maturity index etc.

Testing Reliability Metrics

Software testing is a process used to identify the

correctness, completeness, and quality of developed

computer software. The basic function of testing is to detect

defects in software and correct it before the release to the

end users. Testing Reliability metrics uses two approaches

to evaluate the reliability. First approach is to ensure that the

system is equipped with the functionality specified in the

requirements. This approach minimizes the errors which

causes due to the lack of functionality. The second approach

is the evaluation of the number of errors in the code and the

rate of finding the errors and fixing them [9]. Test coverage

metrics are a way of estimating fault and reliability by

performing tests on software products. Fault and failure

metrics is able to determine when the software is

approaching failure-free execution. Failure rate and mean

time to failure (MMTF) are the two most used metrics in

software system for reliability testing. Test coverage,

Failure rate, Defect density, mean time to repair, mean

down rate, mean accuracy are some other important metrics

of this phase.

Some of the most common reliability metrics used to

quantitatively express the reliability of software product are

discussed in the following section. Some of these metrics

used to measure both hardware and software reliability.

1. MTTF (Mean Time To Failure): MTTF is the average

time between two successive failures observed over a large

number of failures. It is the average time it takes for a

system to fail. In other words we understand it as that it is

the time that a system is available i.e. not failed. It is often

referred to as „uptime‟ in the IT industry. MTTF is a

statistical value and is meant to be the mean over a long

period of time and a large number of units.

An MTTF of 300 means an average of 300 time units passes

between failures i.e. one failure can be expected every 300

time units. The time units are totally dependent on the

system and only run-time is considered in the time

measurement. Here failure means system does not meet its

desired objectives.

2. MTTR (Mean Time To Recover): It is another critical

metric and measures the amount of time required to repair a

system and bring it back online. Failure causes because of

errors and some time required to find and fix the error.

MTTR measures the average time it takes to track the errors

causing the failure and then to fix them.

3. MTBF (Mean Time Between Failure): The most

common failure related metric “MTBF” refers to the amount

of time that elapses between one failure and the next. It is

the average time between consecutive system failures.

Mathematically, this is the sum of MTTF and MTTR, the

total time required for a device to fail and that failure to be

repaired. MTBF of 300 hours means that once a failure

occurs, the next failure is expected to occur only after 300

hours. Here time measurements are real time and not the

execution time as in MTTF.

4. ROCOF (Rate Of Occurrence Of Failures): ROCOF

corresponds to the failure intensity i.e. it measures the

frequency or rate of occurrence of unexpected behaviour,

For example ROCOF of 0.02 means 2 failures are likely in

each 100 operational time units. For the software product

ROCOF measures can be obtained by observing the

behaviour of a software product in operation over a

specified time interval and then calculating the total number

of failure during this interval.

5. POFOD (Probability Of Failure On Demand):
POFOD measures the likelihood that a transaction request

or system will fail when a request is made. This metrics

does not explicitly involve time measurement as in the case

of other metrics. For example POFOD of 0.001 means that

1 in 1000 requests may result in failure. Here any failure is

important and it doesn‟t matter how many.

6. AVAIL (Availability): AVAIL measures of how likely

a system is available for use, taking in to account repairs

and other down-time. It is the likelihood that the system will

work satisfactorily at a given period of time. To calculate

Software Availability, we need data for the failure time/rates

and for the restoration Time / rates. For example availability

of .997 means that system is available 997 out of 1000 time

units.

 ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 10, December 2012

Copyright to IJARCCE www.ijarcce.com 812

The above six reliability metrics are used to quantify the

reliability of the software product. These reliability metrics

are concerned around the probability of occurrence of

system failures but take no account of the consequences of

the failures.

VI. OSS AND RELIABILITY METRICS

Measurement of reliability is not an exact science since

there is no clear definition to what aspects are related to

software reliability. Several reliability metrics exists which

are primarily based on different aspects like project, process

etc. and for the software developed by traditional method.

These metrics measures software reliability in various

phases like requirements phase, Design and coding phase,

and testing phases. Open source software development

methodology is completely different and they does not have

formal document for Requirement, Design, Testing, and so

on. There is no formal requirement analysis, system design

and testing before release is hardly carried out. Very few

researches have been done on the applicability of reliability

metrics on open source software. In a closed source

development, the metrics are mainly used by the companies,

institutions and project managers in order to get a

quantitative view of how they are doing and for improving

software and personnel performances. In an open source

environment no project managers or company exists, there

are mainly poll of developers/contributors and users. The

main strengths of open source projects are long pool of

developers, early and frequent release, and frequent addition

of patches. Although the systematic requirement analysis or

not done in open source project but these project starts with

the personal need and requirement is clear to the developer.

New projects begins with a personal need of a single

developer who has a vision and tries to devise solutions for

his unmet need calls this “scratching an itch” [12]. So there

is no conflicting in requirement and requirement compliance

is almost met. Then he or she starts and discussion with his

friends and colleagues about the possible solution and

making the code base. To assess the quality of the code,

existing design and code reliability metrics could be a

choice for experienced developers. Typically open source

software is under permanent development, testing and bug

fixing. Number of errors, number of bugs reported, number

of bugs removed, failure intensity etc. data are available

through the bug repository of the project. These repositories

not only providing bug modification progress to the

developers but also ease of reporting bug to the users. The

data available through these bug repositories helps to

measure MTTF,MTTR,MTBF for the OSS projects. This

reliability value can be calculated for the number of errors

and number of repairs during a specified time interval.

Reliability can also be calculated as:

Reliability = 1 – Number of errors (actual or

predicted)/Total number of lines of executable code

Concept of reliability of open source software is not

different from normal software reliability and many metrics

equally applicable to predict the software behavior and to

measure the reliability of OSS. Only difference for

reliability of OSS is in collection of data, source of

collection and trend of that data for the specific open source

software. In a closed source development most of defect

related data made available only after the problem is

resolved. But the bug repositories of open source system

maintain this information from the time the problem was

reported until the problem is resolved. So for open source

projects two more metrics helps to measure the reliability

named MTTPR (Mean Time to Problem Report) and

MTTPC (Mean Time To Problem Correction). MTTPR is

the mean or average amount of time a system is operational

without problems. MTTPC is defined as the average time

taken to correct problem reports [13]

Software reliability metrics discussed some times requires

many complex parameters and are good for the experienced

developer. But for a normal user, who want to take the

adoption decisions of OSS have a difficulty to obtain these

parameters and measures. Therefore there is a need of

simple metrics which will be based on the data publicly

available on the project site or repository sites or code

search sites like ohloh.

The public nature of open source software development

makes a quantitative approach to analyzing open source

software development processes possible. Data about the

actual behavior of software developers is readily available

to researchers in source code repositories, in mailing list

archives, and on project websites. This is in sharp contrast

to closed source projects, which typically remain hidden

behind corporate firewalls[14]. Ohloh is a website which

provides a web services suite and online community

platform that aims to map the landscape of open source

software development. It is a free public directory of free

and open source software and the contributors who create

and maintain it. Ohloh does not host projects and code. It is

a directory. A community and analytics and search services.

By retrieving data from revision control repositories (such

as CVS, SVN, Git, Bazaar, and Mercurial), Ohloh provides

statistics about the longevity of projects, their licenses and

software metrics such as source lines of code and commit

statistics. The codebase history informs about the amount of

activity for each project. The Ohloh database provides the

complete configuration management history of each crawled

project. Based on the various measures available through

sites discussed, we propose two source code reliability

metrics which helps users/potential adopters to assess the

quality of open source projects and to take adoption decision

on open source project.

 ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 10, December 2012

Copyright to IJARCCE www.ijarcce.com 813

VII. PROPOSED METRICS

No. of contributors per thousand line of code: In an open

source projects number of contributors irrespective of their

role in project, simply contributing in any form to the

development of OSS project plays an important role. Eric

Raymond [12] in his famous essay and book “The Cathedral

and The Bazaar” states that “with enough eye balls, all bugs

are shallow” or more formally: "Given a large enough beta-

tester and co-developer base, almost every problem will be

characterized quickly and the fix will be obvious to

someone." The rule was formulated and named in honor of

Linus Torvalds as linus‟ law. This rule suggests that there

exists a positive relationship between the number of people

involved, bug numbers, and software quality. As there are

more people involved in development, bug detection and

fixing is fast. As more people having the source code

available when bug becomes an issue many of these people

quickly resolve the problem. “By sharing hypotheses and

results with a community of peers, the scientist enables

many eyes to see what one pair of eyes might miss [15].

The success of many OSS products has proven that software

test productivity scale up as the number of developers

helping to debug the software increases. [16] Many

researches agrees that collaborative development is the best

ways to identify the most possible bugs in a program it has

been stated that, “if you post it, someone will fix it,”.

Presenting the code to multiple developers with the purpose

of reaching the consensus about its acceptance is a simple

form of the software reviewing. Researchers and

practitioners have repeatedly shown the effectiveness of

reviewing process in finding bugs and security issues [17]

and also that reviews may be more efficient than testing. In

OSS projects there is a lack of systematic testing or other

planned, prescriptive approach but still the code quality is

maintained largely by “massively parallel debugging”. The

efficiency of bug finding and fixing is higher in OSS as the

OSS is supported by people all over the world as compare to

the traditional software which is supported by the parent

company only.

Ruben et el [18] in their research on open source community

found a positive relationship between the reliability and the

number of developers in open source projects. Following are

the finding of their research:

• The open source software tend to more reliable if

 bigger the percentage of developers in an open source

 community who actually use the software. In OSS

 producers of the software are the users also and

 mostly people participate in OSS development to

 solve a personal need. Therefore the software works

 according to specified need.

• The OSS is more reliable if the flow of information in

 an open source community is more transparent.

 Because of the openness the work of each contributor

 is openly visible in OSS development. Therefore every

contributor before submitting the code thoroughly

check the every piece of source code.

• More popular open source software are more reliable.

 As the OSS become popular among the users it

 attracts external stakeholders. They perform various

 measurement through their tools and methods and

 helps to improves the development process.

Crowston et el [19] has made an study on the success of

source software and reported that number of users,

Downloads, Inclusion in distributions, Popularity or views

of information page, Reuse of code are the measure of

success of the project. OSS projects mainly dependent on

volunteer developers. The ability of a project to attract and

retain developers on an on-going basis is important for its

success. Therefore the number of developers involved in a

project is an indicator of success. Wang et el in their study

on evaluation of Ubuntu found that The open source

community and its members play essential role in OSS

evaluation. The quality of the OSS system is comparable to

their commercial counterparts despite the fact that they are

developed by not following traditional software engineering

principles. Lakhani et el [20] argued that the quality is

attributed by the review process done by a large number of

contributors and the expertise and passion of the developer

on the work they choose to do.

Open Source Development is a Community-Driven

Development in its natural and all these studies and

discussion suggests that these members not only play

essential role in OSS evaluation but also there is a positive

relationship between the number of community members

and reliability of open source software. Therefore the

quality and reliability of the OSS code needs to be studied

on the scale of number of contributors. We propose a

derived or computed metric No. of contributors per

thousand line of code to assess the source code quality and

reliability. This is calculated as follows:

Total number of contributors
----------------------------------- x 1000
Source line of code

SLOC (Source line of code) metric is one of very first

metric in software engineering and used to measure the size

of a computer program by counting the number of lines in

the text of the program‟s source code. Several experiments

have confirmed that effort is highly correlated with source

line of code and more development time is required with the

program of large SLOC. Thus SLOC is typically used to

predict the amount of effort that will be required to develop

a program as well as to estimate programming productivity.

Number of contributor is a repository metric and both these

measurement are publicly available in the repository site of

the project or OSS database site Ohloh. These

measurements are not publicly available in the case of

proprietary software. The proposed metric is an indicator of

 ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 10, December 2012

Copyright to IJARCCE www.ijarcce.com 814

source code reliability. According to the Software

Engineering Institute, an experienced programmer produces

approximately one defect per 100 lines of code, or an

average defect rate of 1 percent [21]. More the contributors

per thousand line of code, lesser the chance that defect will

occur resulting more reliable source code as each

contributor has to write or examine few codes. This metric

is an indicator for the user and less experienced

programmers of OSS to tentatively assess the source code

reliability and to take the adoption decision of open source

software.

No. of commits per thousand line of code:

Another measurement which is publicly available related to

open source projects is number of commits. A commit is an

act of committing; in open source development environment

a commit is the action with which a developer contributes a

piece of code to the project‟s repository through the revision

control system such as CVS or subversion. These commits

in are the latest changes of the source code to the repository

and become part of the head revision of the repository.

Commits are submitted for bugs fixing; providing new

features, to clean up a project and sometimes add whole new

libraries in one go. All these activities may encompass in

any of the following three actions: the addition of code, the

removal of code, and the changing of existing code. A

commit is an individual code contribution of a developer.

Lind et el [22] show that lines of code are a good proxy for

work spent on that code. Hence Commit is a fundamental

unit of work in programming that a developer makes to the

code base of the project in work. Every single commit

action of all the projects over their entire history is

available. When other users do an update or a checkout from

the repository, they will receive the latest committed

version. A particular challenge for analyzing software

developer behavior and better understanding the open

source software development process is to understand the

intent of these code contributions [14]. The number of

commits in a project tells how frequent the changes like bug

fixing, addition of new features, release of new version etc.

occur in a project.

Figure 1: Reliability Curve:source [23]

Figure 1 shows the behavior of the software reliability.

Reliability curve of software tells that how failure intensity

and reliability typically vary as faults are removed. As the

faults removes from the program failure intensity tends to

drop and reliability tends to increase. Introduction of new

features or design changes may introduce new faults causing

step increase in the failure intensity. But quick issue of

patches through frequent commits causes quick drop in

failure intensity hence increase in the overall quality and

reliability of the software. Based on this discussion we

propose another derived metrics No. of commits per

thousand line of code, which is calculated as follows:

Total number of commits
------------------------------- x 1000
Source line of code

In OSS there no formal testing is carried out, OSS users not

only work as developers but as a test teams for the OSS

projects. More commits on per thousand line of code

implies that the source code is tested by many people. This

also implies that how quickly OSS community responds to

faults or adding new features in a project causing more

reliable software in lesser time. Various researches has

shows that software defects are unavoidable problem and

open source community responds more rapidly than

proprietary software vendors when a software flaw is

discovered. Software reliability increases rapidly when

response to software flaw is quick. Again this metric helps

the user and less experienced programmers of OSS to

tentatively assess the source code reliability and to take the

adoption decision of open source software.

VIII. CONCLUSIONS

Software Reliability measurement is not an exact science

and indirect measures are applied to measure the software

reliability. Reliability metrics are used for quantitative

 ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 10, December 2012

Copyright to IJARCCE www.ijarcce.com 815

measurement of software reliability. In this paper

exploratory study is made on the software reliability metrics

and discussion has also been made on the open source

software perspective. Since the existing metrics are useful

for experienced developers there is a need of simple metrics

based on the publicly available data for the users of open

source software which help them to take tentative adoption

decision. Various studies show that open source community

and their frequent commits play an important role in the

development of open source software. On this perspective

we have proposed two metrics. These metrics are simple

enough for non experience developers and users of OSS and

quantitative data is easily available to them from various

repository sites. The metrics are preliminary in nature for

the evaluation of reliability of open source software and

need more quantitative investigation to verify our

assumptions. These metrics does not help to take decision in

the enhancement of the development process, but it simply

helps potential adopters to assess the OSS and to take

adoption decision.

REFERENCES

[1] Sommerville, I., Software Engineering, 7th edition, Addison

Wesley, New York ,2004.

[2] Roger S. Pressman, Software Engineering A Practitioner‟s
Approach, McGraw Hill, 4th Edition,1997.

[3] Futrell, Robert T.: Futrell ,Donald F. And Shafer, Linda I., “Quality

Software Project Management”, Pearson Education Asia 2002.

[4] N.E. Fenton and A.A. Kaposi, Metrics and software structure.

Journal of Information and Software Technology, vol. 29, 1987, 301-320.

[5] Norman E. Fenton and Martin Neil, Software Metrics: Roadmap,
International Conference on Software Engineering, Limerick,

Ireland, pp 357-370, 2000

[6] Grady, R. B. and D. R. Caswell. Software Metrics: Establishing a
Company-Wide Program. Engle- wood Cliffs, N. J.: Prentice-Hall,

1987.

[7] Mills, Everald E, “Software Metrics SEI Curriculum module SEI –
CM – 12 – 1.1_, Carnegie Mellon University“, Software

engineering Institute, December, 1988.

[8] ANSI/IEEE, Standard Glossary of Software Engineering
Terminology, STD-729- 199, ANSI/IEEE, 1991.

[9] Rosenberg Dr. Linda, Hammer Tad, Shaw Jak, (1999), Software

Metrics and Reliability.
[10] P.Henry, O.Neill, J.Patrick , “Military Software Quality Metrics”

,Chief Equipment Department of China People Liberation Army, 2004.

[11] S. Xu, “Reconsideration of Software Reliability Measurements”,

16th IEEE Asian Test Symposium, School of Computers, Shanghai

University, CHINA, IEEE, 2007.

[12] Eric S. Raymond, (1999), The Cathedral and the Bazaar: Musingson
Linux and Open Source by an Accidental Revolutionary, O‟Reilly &

Associates.

[13] J. D. Musa, A. Iannino, and K. Okumoto. Software reliability:
measurement, prediction, application. McGraw-Hill, Inc., New

York, NY, USA, 1987.

[14] Oliver Arafat, Dirk Riehle, The Commit Size Distribution of Open
Source Software, In Proceedings of the 42nd Hawaiian International

Conference on System Sciences (HICSS-42, track on Open

Movements: FLOSS, Open Contents, and Open Communities).
IEEE Press, 2009.

[15] Vixire, P. Software Engineering. In C. DiBona, S. Ockman & M.

Stone(eds), Open Sources: Voices fi"om the Open Source
Revolution, O'Reilly Sebastopol, 1999.

[16] Schmidt, D. C. and Porter, A. Leveraging Open-Source

Communities to Improve the Quality & Performance of Open-
Source Software. In Proceedings of the 23rd Intemational Conference on

Software Engineering. (Toronto, Canada, May 15, 2001). ACM Press, New

York, 2001, 52-56.
[17] Pfleeger, Charles P.; Pfleeger, Shari Lawrence (2003). Security in

Computing, 4th Ed.. Prentice Hall PTR. pp. 154–157. ISBN 0-13-

239077-9.
[18] Ruben van Wendel de Joode & Mark de Bruijne, The Organization

of Open Source Communities: Towards a Framework to Analyze the

Relationship between Openness and Reliability, Proceedings of the 39th
Hawaii International Conference on System Sciences - 2006

[19] Crowston, K., Howison, J., and Annabi, H. (2006). Information

systems success in free and open source software development: Theory
and measures. Software Process:Improvement and Practice (Special

Issue on Free/Open Source Software Processes.)

[20] Lakhani, K.R. and R.G. Wolf, ―Why Hackers Do What They Do:

Understanding Motivation and Effort in Free/Open Source Software

Projects, In Perspectives on Free and Open Source Software, edited by J.
Feller, B. Fitzgerald, S. Hissam, and K. R. Lakhani, MIT Press, 2005

[21] W. S. Humphrey, The Quality Attitude, Software Engineering

Institute (2004), http://www.sei.cmu.edu/news-at-
sei/columns/watts_new/watts-new.htm.

[22] Lind, R., Vairavan, K.: An experimental investigation of software

metrics and their relationship to software development e_ort.
IEEE Transactions on Software Engineering 15, 649-653 (1989)

[23] John D. Musa, Software reliability Engineering: More reliable

software faster and Cheaper, II edition, TMH, 2004, page 34.

Biography

Mr. Vinay Tiwari is qualified Computer

professional having done PGDCA with

distinction (1989) and MCA (2000). He is
currently pursuing his Ph.D. in Computer

Science. He has more than 20 years professional

experience, 19 years of teaching experience at
UG level and 12 years at P.G. level as counselor

at IGNOU and R.D.University His Area of

interests are Computer Programming, Web
Designing and Software Engineering. In the last 5 years he has attended 5

International and 6 National conferences and published 5 research papers in

the international journals of repute. His two books on computers have also
been published.

Prof. R.K. Pandey is Ph.D. in Computer Science
having more than 20 years of teaching experience

at various level . Presently he is working as

Director University Institute of Computer Science
and Applications, R.D. University, Jabalpur. He

has attended various International and National

conference and presented research papers of

repute. His current research area of interest:

Software Engineering education and training,
Software Architecture, Software design metrics.

